Linear Quadratic Optimal Control Systems 1

  本章将会研究具有二次型性能指标或测度的线性对象或系统的闭环最优控制。这将引出linear quadratic regulator (LQR)系统的状态调节、输出调节和跟踪问题。建议复习附录A和附录B中的内容。


3.1 Problem Formulation

提示

讨论被控对象和二次性能指标,特别是物理意义。这有助于获得在二次型成本泛函中选择各种矩阵的一些优美的数学条件。因此,将从工程角度处理优化问题。

  考虑线性时变系统(LTV)

(3.1.1)x˙(t)=A(t)x(t)+B(t)u(t) (3.1.2)y(t)=C(t)x(t)

其成本泛函(CF)或性能指标(PI)为

(3.1.3)J(u(t))=J(x(t0),u(t),t0)=12[z(tf)y(tf)]F(tf)[z(tf)y(tf)]+12t0tf[[z(t)y(t)]Q(t)[z(t)y(t)]+u(t)R(t)u(t)]dt

其中,x(t)为n维状态向量,y(t)为m维输出向量,z(t)为m维参考期望输出向量(或为n维期望状态向量,若状态x(t)可知),u(t)为m维控制向量,e(t)=z(t)y(t)(或e(t)=z(t)x(t),若状态x(t)直接可知)为m维误差向量。A(t)n×n状态矩阵,B(t)n×r控制矩阵,C(t)m×n输出矩阵,