"Learning denotes changes in a system that enable a system to do the same task more efficiently the next time." – Herbert Simon
"Learning is constructing or modifying representations of what is being experienced." – Ryszard S. Michalski
Learning = improving with experience at same task – Tom M. Mitchell
T (Task) E (Experience) P(Performance)
Learning: change / construct or modify / improve
Training Experience
给定:
Instance Space \(\color{green}{X}\):可能的情况
Hypothesis Class \(\color{green}{H}\):假设
Training Examples \(\color{green}{D}\):positive an negative examples of the Target Function \(\color{green}{C}\) \(<x_1,c(x_1)>,\ \ldots ,\ <x_m,c(x_m)>>\)
决定:
A hypothesis \(h \in H\) such that \(\color{green}{h(x) = c(x) ,\ \forall x \in X}\),即找到一个假设使得对于所有的\(x \in X\)假设的输出都和实际的输出一样。
一般来说,\(X\)是无穷大或指数型的,所以一般来说无法保证对于所有的\(x \in X\)都有\(h(x) = c(x)\)。取而代之的是,选出一个好的近似,e.g. \(h(x) = c(x) ,\ \forall x \in D\)。